PROBLEMAS

2. Obtenha os limites

a)
$$\lim_{x\to 3} \frac{x^2-9}{x-3}$$

b)
$$\lim_{x \to -7} \frac{49 - x^2}{7 + x}$$

c)
$$\lim_{x\to 5} \frac{5-x}{25-x^2}$$

d)
$$\lim_{x\to 0} \frac{x^2 + x}{x^2 - 3x}$$

e)
$$\lim_{x \to 0} \frac{x^3}{2x^2 + x}$$

f)
$$\lim_{x \to 1} \frac{x^2 - 4x + 3}{x - 1}$$

g)
$$\lim_{x\to 4} \frac{x^2 - 7x + 12}{x - 4}$$

h)
$$\lim_{x\to 1} \frac{x-1}{x^2-3x+2}$$

i)
$$\lim_{x \to 1} \frac{x^2 - 2x + 1}{x - 1}$$

j)
$$\lim_{x\to 2} \frac{x-2}{x^2-4}$$

k)
$$\lim_{x\to 2} \frac{x^3 - 8}{x - 2}$$

$$\lim_{x \to 3} \frac{x^3 - 27}{x^2 - 5x + 6}$$

m)
$$\lim_{x \to 1} \frac{x^2 - 4x + 3}{x^3 - 1}$$

n)
$$\lim_{x \to -1} \frac{x+1}{x^2 + 3x + 2}$$

3.3 LIMITES INFINITOS

Consideremos a função $f(x) = \frac{5}{x-3}$ definida para todos os números reais diferentes de

3. Vejamos o que acontece com f(x) na vizinhança de 3.

Calculemos o limite de f(x) quando x tende a 3 pela direita: vamos atribuir a x os valores de uma sucessão que convirja para 3 pela direita, por exemplo:

As correspondentes imagens são:

$$f(3,1) = \frac{5}{0,1} = 50;$$

$$f(3,01) = \frac{5}{0,01} = 500;$$

$$f(3,001) = \frac{5}{0,001} = 5.000;$$

$$f(3,0001) = \frac{5}{0,0001} = 50.000$$

Observamos que as imagens vão ficando cada vez maiores, superando qualquer valor fixado. Dizemos, neste caso, que o limite de f(x), quando x tende a 3 pela direita, é infinito e escrevemos:

$$\lim_{x \to 3^+} f(x) = \lim_{x \to 3^+} \frac{5}{x - 3} = \infty$$

Analogamente, para calcularmos o limite de f(x) pela esquerda, vamos atribuir a x por exemplo, os valores:

As correspondentes imagens são:

$$f(2,9) = \frac{5}{-0,1} = -50$$

$$f(2,99) = \frac{5}{-0.01} = -500$$

$$f(2,999) = \frac{5}{-0,001} = -5.000$$

$$f(2,9999) = \frac{5}{-0.0001} = -50.000$$

Observamos que as imagens vão diminuindo cada vez mais, ficando abaixo de qualquer valor fixado. Dizemos que o limite de f(x) é menos infinito, quando x tende a 3 pela esquerda, e escrevemos:

$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} \frac{5}{x - 3} = -\infty$$

De um modo geral, o limite de uma função é infinito, quando os valores de f(x) vão ficando cada vez maiores, superando qualquer valor fixado; da mesma forma, dizemos que o limite de uma função é menos infinito, quando os valores de f(x) vão ficando cada vez menores, de modo a se situarem abaixo de qualquer valor fixado.

PROBLEMAS

3. Para cada função f(x) abaixo, calcule $\lim_{x\to a^+} f(x)$ e $\lim_{x\to a^-} f(x)$, quando existirem:

a)
$$f(x) = \frac{4}{x-6}$$
, $a = 6$

b)
$$f(x) = \frac{3}{1-x}$$
, $a = 1$

c)
$$f(x) = \frac{2}{|x-5|}$$
, $a = 5$

d)
$$f(x) = \frac{x+5}{x}$$
, $a = 0$

e)
$$f(x) = \frac{x}{2-x}$$
, $a = 2$

f)
$$f(x) = \frac{x^2}{x-1}$$
, $a = 1$

g)
$$f(x) = \frac{1}{x}$$
, $a = 0$

h)
$$f(x) = \frac{1}{x^2}, a = 0$$

i)
$$f(x) = \frac{-1}{x^2}$$
, $a = 0$

j)
$$f(x) = \frac{1}{x^3}$$
, $a = 0$

k)
$$f(x) = 2x + \frac{1}{x^2}$$
, $a = 0$

1)
$$f(x) = 5x + \frac{3}{x-2}$$
, $a = 2$

m)
$$f(x) = \frac{5x}{(x-1)^2}$$
, $a = 1$

n)
$$f(x) = \frac{1}{5x(x-1)^2}$$
, $a=1$

o)
$$f(x) = \frac{4x}{(x-3)^2}$$
, $a = 3$

p)
$$f(x) = \frac{1}{4x(x-3)^2}$$
, $a = 3$

3.4 LIMITES NOS EXTREMOS DO DOMÍNIO

Quando fizemos o estudo das funções no Capítulo 2, vimos a importância de conhecer o comportamento de uma função quando *x* era muito grande (tendendo para infinito) ou muito pequeno (tendendo para menos infinito). Na verdade o que queríamos era determinar os valores dos limites, chamados limites nos extremos:

$$\lim_{x \to \infty} f(x) \text{ ou } \lim_{x \to -\infty} f(x)$$

A maneira de obtermos esses limites consiste em escolher uma sucessão que divirja para mais infinito, ou simplesmente para infinito (∞) , ou menos infinito $(-\infty)$ e determinarmos o comportamento da nova sucessão gerada por f(x).

EXEMPLO 3.5 Consideremos a função $f(x) = \frac{1}{x}$ e tomemos uma sequência que divirja para infinito, por exemplo, (10; 100; 1000; 10000; ...; 10ⁿ; ...).

As correspondentes imagens são:

$$f(10) = \frac{1}{10} = 0.1,$$

$$f(100) = \frac{1}{100} = 0.01,$$

$$f(1000) = \frac{1}{1000} = 0.001,$$

$$f(10000) = \frac{1}{10000} = 0.0001, \dots$$

Intuitivamente, percebemos que as correspondentes imagens convergem para 0. Dizemos que o limite de f(x) quando x tende para infinito é 0 e escrevemos:

$$f(x) = \lim_{x \to \infty} \frac{1}{x} = 0$$

Analogamente, para determinarmos o limite de f(x) quando x tende para menos infinito, tomemos uma sequência que divirja para menos infinito, por exemplo,(-10; -100; -1.000; ...; -(10)ⁿ...) . As correspondentes imagens são: $f(-10) = \frac{1}{-10} = -0,1,$

$$f(-10) = \frac{1}{-10} = -0.1,$$

$$f(-100) = \frac{1}{-100} = -0.01,$$

$$f(-1.000) = \frac{1}{-1000} = -0.001,$$

$$f(-10.000) = \frac{1}{-10000} = -0.0001, \dots$$

Percebemos intuitivamente que as imagens também convergem para 0. Dizemos então que o limite de f(x) é 0 quando x tende a menos infinito, e escrevemos:

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{1}{x} = 0$$

O gráfico de f(x) é dado na Figura 3.6, em que fica evidente os limites calculados.

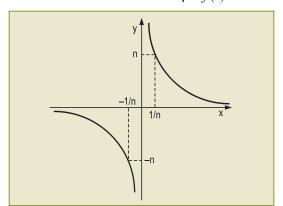


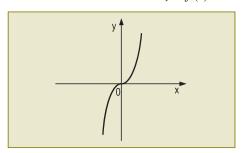
FIGURA 3.6 Gráfico da função f(x) = 1/x

EXEMPLO 3.6 Consideremos a função $f(x) = x^3$. Se considerarmos as mesmas sucessões divergentes para mais e menos infinito dadas no exemplo anterior, poderemos concluir que:

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} x^3 = \infty \quad \text{e} \quad \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x^3 = -\infty$$

Conforme vimos no capítulo 2, o gráfico de f(x) é dado pela Figura 3.7, em que se evidenciam os limites calculados.

FIGURA 3.7 Gráfico da função $f(x) = x^3$



Observações:

- ▶ Os limites nos extremos (x tendendo a mais ou menos infinito) podem ser um número real, ou ainda podem dar mais ou menos infinito, conforme os exemplos anteriores mostraram.
- ▶ Há funções cujos limites nos extremos não existem, como por exemplo a função f(x) = sen x, pois f(x) oscila entre − 1 e 1 à medida que x tende para mais ou menos infinito.
- ➤ O limite nos extremos de uma função polinomial é igual ao limite de seu termo de maior expoente, pois colocando-se esse termo em evidência, todos os outros termos tendem a 0. Isso pode ser constatado no seguinte exemplo:

$$\lim_{x \to \infty} (2x^3 + 4x^2 - 5x + 9) = \lim_{x \to \infty} 2x^3 \left(1 + \frac{2}{x} - \frac{5}{2x^2} + \frac{9}{2x^3}\right) = \lim_{x \to \infty} 2x^3 = \infty$$

pois todos os termos (exceto o primeiro) entre parênteses tem limite igual a 0 quando *x* tende a infinito.

➤ Como consequência da observação anterior, quando tivermos o limite nos extremos de um quociente de dois polinômios, ele será igual ao limite do quociente dos termos de maior expoente do numerador e do denominador. Assim, por exemplo:

$$\lim_{x \to \infty} \frac{4x^3 + 5x^2 - 7x + 9}{2x^2 - 8x - 17} = \lim_{x \to \infty} \frac{4x^3}{2x^2} = \lim_{x \to \infty} 2x = \infty$$

PROBLEMAS

4. Calcule os seguintes limites

a)
$$\lim_{x\to\infty}\frac{1}{x^2}$$

b)
$$\lim_{x \to -\infty} \frac{1}{x^2}$$

c)
$$\lim_{x\to\infty} x^4$$

d)
$$\lim_{x\to -\infty} x^4$$

e)
$$\lim_{x\to\infty} 3x^5$$

f)
$$\lim_{x\to -\infty} 3x^5$$

g)
$$\lim_{x\to\infty} e^x$$

h)
$$\lim_{x \to \infty} e^x$$

i)
$$\lim (2x^4 - 3x^3 + x + 6)$$

j)
$$\lim_{x \to \infty} (2x^4 - 3x^3 + x + 6)$$

k)
$$\lim_{x \to \infty} (2x^5 - 3x^2 + 6)$$

1)
$$\lim_{x \to \infty} (2x^5 - 3x^2 + 6)$$

m)
$$\lim_{x\to\infty} \frac{5x^4 - 3x^2 + 1}{5x^2 + 2x - 1}$$

n)
$$\lim_{x \to -\infty} \frac{5x^4 - 3x^2 + 1}{5x^2 + 2x - 1}$$

o)
$$\lim_{x \to -\infty} \frac{-3x^3 + 2x^2 + 5}{x + 1}$$

p)
$$\lim_{x\to\infty}\frac{2x+1}{x-3}$$

q)
$$\lim_{x\to\infty} \frac{2x+1}{x-3}$$

r)
$$\lim_{x \to \infty} \frac{25x - 2}{16x - 3}$$

s)
$$\lim_{x \to \infty} \frac{x^2 + 3x + 1}{2x^2 - 5x}$$

t)
$$\lim_{x\to\infty}\frac{x-1}{x^2+3}$$

u)
$$\lim_{x \to -\infty} \frac{x^2 - 3x + 1}{x^3 - x^2 + x - 1}$$

v)
$$\lim_{x \to -\infty} \frac{4x+1}{-2x^2+5x-1}$$

w)
$$\lim_{x \to \infty} \frac{1 - 2x^2}{3 - 4x}$$

$$x) \lim_{x \to -\infty} \frac{1 - 2x}{3 - 4x}$$

3.5 CONTINUIDADE DE UMA FUNÇÃO

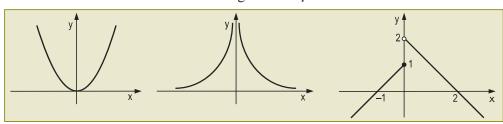
Intuitivamente, a idéia de função contínua decorre da análise de seu gráfico. Quando o gráfico de uma função não apresenta interrupções, dizemos que ela é contínua. Se houver algum ponto onde ocorre a interrupção, dizemos que é um ponto de descontinuidade.

A fim de tornarmos mais formal esse conceito, observemos as funções que estão na Figura 3.8.

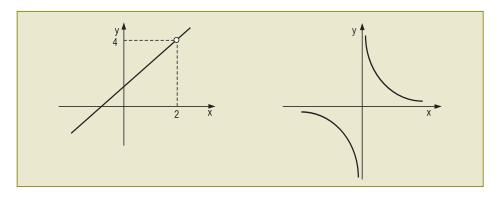
Temos as seguintes considerações a fazer:

Para a função $f_1(x)$, cujo gráfico é uma parábola, para qualquer valor real de b, temos,

FIGURA 3.8 Algumas funções reais



- a) $f_1(x) = x^2$
- b) $f_2(x) = \frac{1}{x^2}$
- c) $f_3(x) = \begin{cases} x+1 \ para \ x \le 0 \\ -x+2 \ para \ x > 0 \end{cases}$



d)
$$f_4(x) = \frac{x^2 - 4}{x - 2}$$

e)
$$f_5(x) = \frac{1}{x}$$

$$\lim_{x \to b^{+}} f_{1}(x) = \lim_{x \to b^{-}} f_{1}(x) = f_{1}(b)$$

ou seja, o limite existe, para x tendendo a b e, além disso, ele é igual ao valor da função em b.

Para a função $f_2(x)$, se calcularmos o limite para x tendendo a zero, veremos que:

$$\lim_{x \to 0^+} f_2(x) = \lim_{x \to 0^-} f_2(x) = \infty$$

ou seja, o limite existe, para x tendendo a 0, mas não é igual ao valor da função para x = 0, pois 0 está fora do domínio.

Para a função $f_3(x)$, se calcularmos o limite para x tendendo a zero, veremos que:

$$\lim_{x \to 0^{-}} f_3(x) = 1 \text{ e } \lim_{x \to 0^{+}} f_3(x) = 2$$

ou seja, não existe o limite da função para x = 0.

Para a função $f_4(x)$, se calcularmos o limite para x igual a 2, teremos:

$$\lim_{x \to 2^{-}} f_4(x) = \lim_{x \to 2^{+}} f_4(x) = 4$$

ou seja, o limite existe para x tendendo a 2, mas a função não está definida para x = 2.

Para a função $f_s(x)$, se calcularmos o limite para x tendendo a zero, teremos:

$$\lim_{x \to 0^{+}} f_{5}(x) = \infty \text{ e } \lim_{x \to 0^{-}} f_{5}(x) = -\infty$$

 $\lim_{x\to 0^+} f_5(x) = \infty \text{ e } \lim_{x\to 0^-} f_5(x) = -\infty$ ou seja, não existe o limite da função para x tendendo a zero.

Pela análise dos gráficos vemos que, com exceção de $f_1(x)$, todas as outras funções apresentam interrupções em algum ponto. No caso da função $f_1(x)$, o que caracteriza a ausência de interrupções é o fato de o limite existir em qualquer ponto b do domínio e além disso, desse limite ser igual à imagem de b.

Isso sugere a seguinte definição:

Uma função f(x) é contínua em um ponto b, se:

$$\lim_{x \to b^{+}} f(x) = \lim_{x \to b^{-}} f(x) = f(b)$$

Caso a função não seja contínua no ponto b diremos que ela é descontínua nesse ponto.

Em resumo, temos:

- $ightharpoonup f_1(x)$ é contínua em todos os pontos do domínio,
- $f_2(x)$ é descontínua para x = 0,
- $ightharpoonup f_3(x)$ é descontínua para x = 0,
- $ightharpoonup f_{A}(x)$ é descontínua para x = 2,
- $f_5(x)$ é descontínua para x = 0.

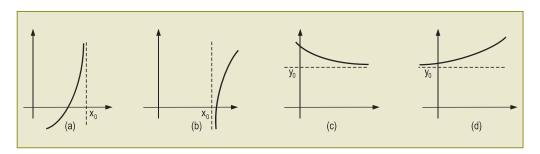
É importante observarmos que, para a função ser contínua, é necessário que existam f(b) e lim f(x) e que sejam iguais. Além disso, pode-se verificar que, se duas funções fe g são contínuas em b, então também serão contínuas: f+g, f-g, f. g. k. f (em que k é uma constante) e f/g (desde que $g(b) \neq 0$).

3.6 Assíntotas verticais e horizontais

Consideremos os gráficos das funções dadas na Figura 3.9:

No casos (a) e (b), dizemos que a reta de equação $x = x_0$ é uma assíntota vertical daquelas funções.

FIGURA 3.9 Assíntotas



Nos casos (c) e (d), dizemos que a reta horizontal de equação $y = y_0$ é uma assíntota horizontal das correspondentes funções.

Formalmente, podemos dizer que, se existir um número x_0 tal que um dos limites laterais de x_0 seja infinito, ou menos infinito, então a reta $x = x_0$ é uma assíntota vertical da função considerada. Geralmente x_0 é um ponto de descontinuidade da função.

Se existirem os limites: f(x)

$$\lim_{x \to \infty} f(x) = c_1 e \lim_{x \to -\infty} f(x) = c_2$$

então as retas $y=c_1$ e $y=c_2$ são chamadas de assíntotas horizontais da função considerada.

EXEMPLO 3.7 Consideremos a função $f(x) = \frac{5x+3}{x-2}$. Como para x = 2 ela não está definida, temos:

- $\lim_{x \to 2^+} f(x) = -\infty \text{ e } \lim_{x \to 2^-} f(x) = -\infty, \text{ então a reta } x = 2 \text{ é uma assíntota vertical de } f(x).$
- $\lim_{x \to \infty} f(x) = 5 \text{ e } \lim_{x \to -\infty} f(x) = 5, \text{ então a reta } y = 5 \text{ é uma assíntota horizontal de } f(x).$

3.7 LIMITE EXPONENCIAL FUNDAMENTAL

Consideremos a função $f(x) = (1 + \frac{1}{x})^x$ que aparece em curvas de crescimento em geral. À medida que x cresce, tendendo a infinito, a fração $\frac{1}{x}$ tende a zero. Entretanto tal fração

somada a 1 e o resultado elevado a x não tem um valor de convergência evidente.

O matemático suiço Leonardo Euler (1707–1783) parece ter sido o primeiro a perceber a importância dessa função. Além disso, ele demonstrou que o limite daquela função para *x* tendendo a infinito era um número irracional compreendido entre 2 e 3,

TABELA 3.1 Limite exponencial fundamental

x	$\left(1+\frac{1}{x}\right)^x$
1	2
2	2,250000
5	2,488320
10	2,593742
20	2,653298
50	2,691588
100	2,704814
200	2,711517
500	2,715569
1.000	2,716924
5.000	2,718010
50.000	2,718255
100.000	2,718268
1.000.000	2,718280

simbolizado por e (número de Euler). Usando uma calculadora é possível ter uma idéia da convergência da função $f(x) = (1 + \frac{1}{x})^x$; a Tabela 3.1 fornece alguns valores de f(x):

Pode-se provar ainda que o limite da função $f(x) = \left(1 + \frac{1}{x}\right)^x$ também dá o número e quando x tende a menos infinito. Em resumo:

$$\lim_{x \to \infty} \left(x + \frac{1}{x} \right)^x = \lim_{x \to -\infty} \left(x + \frac{1}{x} \right)^x = e$$

Uma forma equivalente de escrever o número e é pelo seu limite: $\lim_{x\to 0} (1+x)^{\frac{1}{x}}$. Isto é:

 $\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e$

EXEMPLO 3.8 Juros capitalizados continuamente

Consideremos um capital de \$ 1.000,00 aplicado a juros compostos a taxa de 12% ao ano, pelo prazo de 2 anos.

► Se os juros forem capitalizados anualmente, o montante será

$$M = 1.000(1 + 0.12)^2 = 1.254.40$$

Se os juros forem capitalizados semestralmente a uma taxa semestral proporcional a 12% ao ano, a taxa semestral será de $\frac{12\%}{2} = 6\%$ ao semestre, e o montante será:

$$M = 1.000 (1 + 0.06)^4 = 1.262,48$$

Se os juros forem capitalizados mensalmente a uma taxa mensal proporcional a 12% ao ano, a taxa mensal será de $\frac{12\%}{12} = 1\%$ ao mês, e o montante será:

$$M = 1.000(1 + 0.01)^{24} = 1.269.73$$

Se os juros forem capitalizados diariamente a uma taxa diária proporcional a 12% ao ano, (considerando um ano de 360 dias), será de $\frac{12\%}{360}$ ao dia, e o montante será:

$$M = 1.000 \left(1 + \frac{0.12}{360}\right)^{720} = 1.271,20$$

Poderíamos pensar em capitalização por hora, por minuto, por segundo etc. Cada vez que diminui o prazo de capitalização, o número de capitalizações (k) em um ano aumenta, de modo que a taxa proporcional a 12% ao ano, nesse período de capitalização, é igual a $\frac{12\%}{k}$ e o prazo de aplicação de 2 anos expresso de acordo com o prazo de capitalização vale 2k. Consequentemente, o montante é dado por:

$$M = 1.000 \left(1 + \frac{0.12}{k} \right)^{2k}$$

Dizemos que o capital é *capitalizado continuamente*, quando o montante M é dado por:

 $M = \lim_{k \to \infty} 1.000 \left(1 + \frac{0.12}{k} \right)^{2k}$

Para calcularmos tal limite, podemos chamar $\frac{0,12}{k}$ de $\frac{1}{x}$ e conseqüentemente x será igual a $\frac{k}{0,12}$. Quando k tende a infinito, x também tende, de modo que o limite acima pode ser expresso por:

$$M = \lim_{x \to \infty} 1.000 \left(1 + \frac{1}{x} \right)^{2.(0,12).x}$$

111

$$=1.000 \left[\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x \right]^{2.(0,12)} = 1.000.e^{2.(0,12)} = 1.271,25$$

pois a expressão entre colchetes é o limite exponencial fundamental.

De um modo geral, se um capital C é capitalizado continuamente a uma taxa proporcional a uma taxa i anual, pelo prazo de n anos, o montante é dado por:

$$M = C.e^{i.n}$$

PROBLEMAS

5. A função
$$f(x) = \begin{cases} 2x - 1, \text{ se } x \le 3 \\ 3x - 4, \text{ se } x > 3 \end{cases}$$
 é contínua no ponto $x = 3$?

6. A função
$$f(x) = \begin{cases} x^2 + 3, \text{ se } x \neq 2 \\ 10, \text{ se } x = 2 \end{cases}$$
 é contínua para $x = 2$?

8. Determine
$$k$$
, de modo que a função $f(x) = \begin{cases} 2x + 3, \text{ se } x \neq 2 \\ k, \text{ se } x = 2 \end{cases}$ seja contínua para $x = 2$.

9. Dada a função
$$f(x) = \frac{x-1}{x+1}$$

- a) determine a assíntota vertical no ponto x = -1;
- b) determine as assíntotas horizontais.

10. Dada a função
$$f(x) = \frac{x^2}{x-1}$$

- a) determine a assíntota vertical no ponto x = 1;
- b) determine as assíntotas horizontais.
- 11. Dada a função $f(x) = \log x$, determine a assíntota vertical para x = 0.
- **12.** Dada a função $f(x) = 2^x$ determine a assíntota horizontal.
- **13.** Calcule os seguintes limites:

a)
$$\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^{2x}$$

b)
$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^{\frac{x}{3}}$$