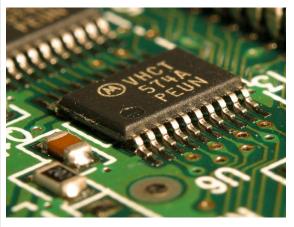


CIÊNCIA DOS MATERIAIS

Profo Dr. Abrão C. Merij

Apresentação

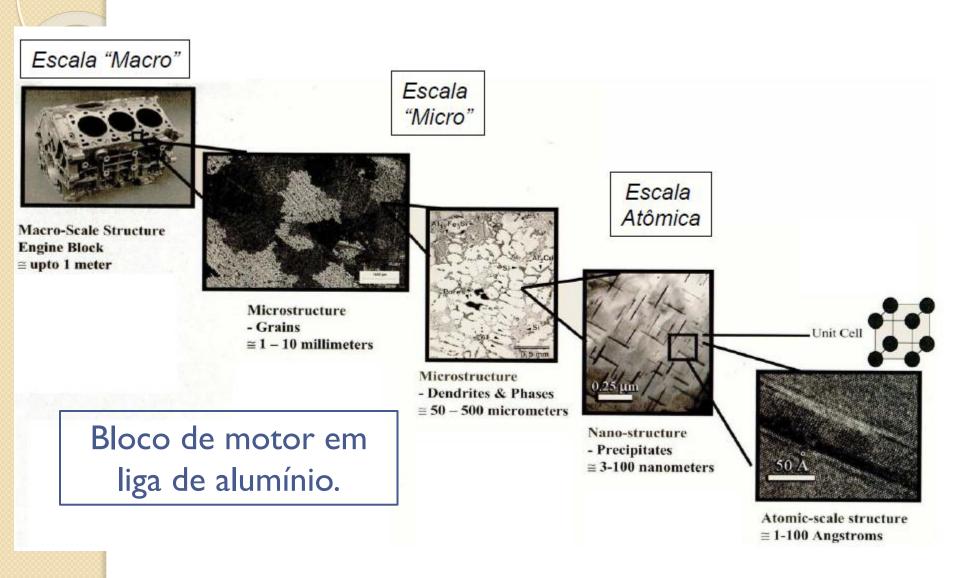
Histórico Acadêmico


- Formação
- Licenciatura em Matemática FIG / Tecnologia em Materiais Fatec SP
- Mestrado em engenharia de Materiais Unifesp
- Doutorado em engenharia de Materiais Unifesp
- Pós-Doutorado em Nanotecnologia Mackenzie

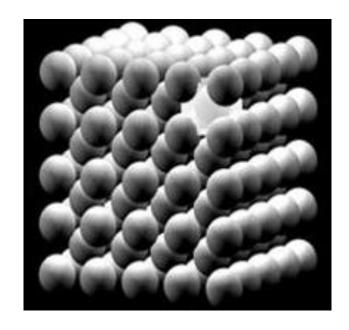
Criador do site mundo dos materiais

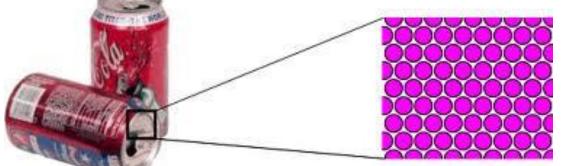
INTRODUÇÃO

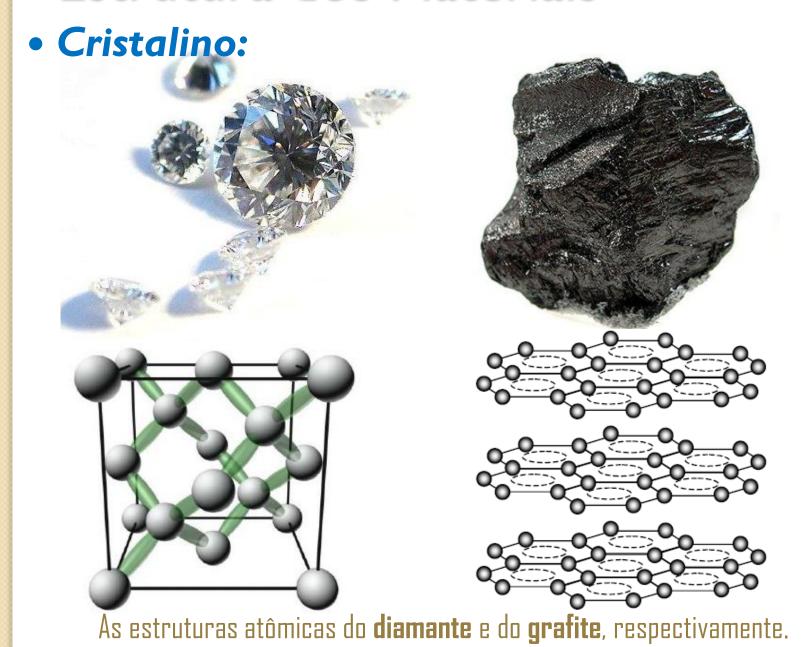
Qual a importância dos materiais?



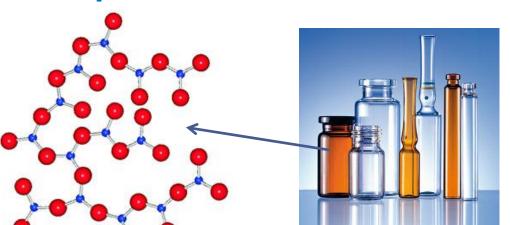
• Estrutura pode (e deve) ser analisada em diferentes ESCALAS:

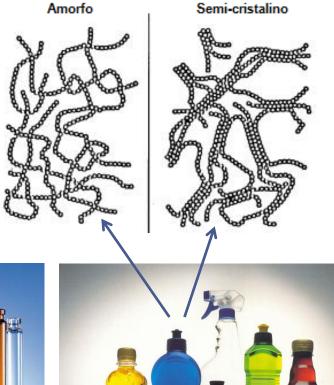

- Subatômica (elétrons no interior dos átomos)
- Atômica (átomos ou moléculas)
- Microscópica (microestrutura)
- Macroscópica (macroestrutura)


Escala e Estrutura

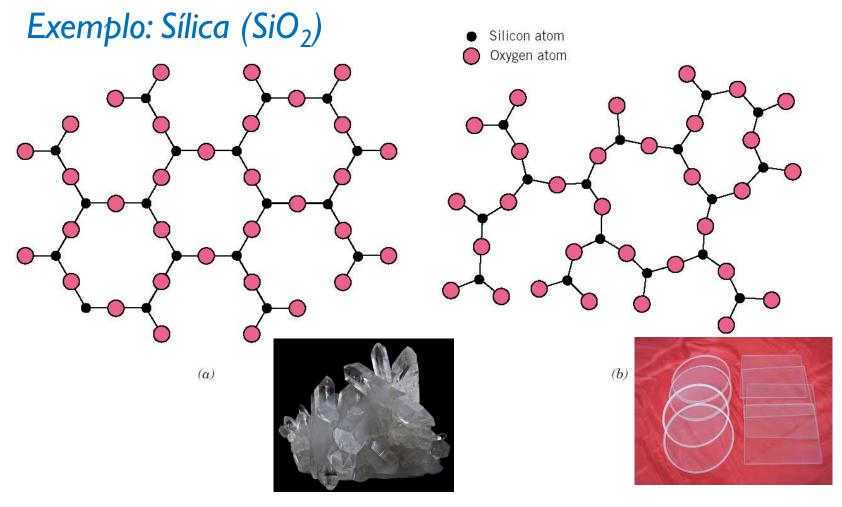

Segundo a distribuição espacial dos átomos, moléculas ou íons, os sólidos podem ser classificados em:

- <u>Cristalinos</u>: Compostos por átomos, moléculas ou íons arranjados de uma *forma* periódica em três dimensões.
- Exemplos: Materiais metálicos (Fe, Al, Zn e Bi) e Cerâmicos (Al₂O₃, SiO₂).





Segundo a distribuição espacial dos átomos, moléculas ou íons, os sólidos podem ser classificados em:


• Amorfos: Compostos por átomos, moléculas ou íons que apresentam ordenação aleatória e de curto alcance.

• Exemplos: Vidros e Polímeros.

Sólidos Cristalinos e Amorfos

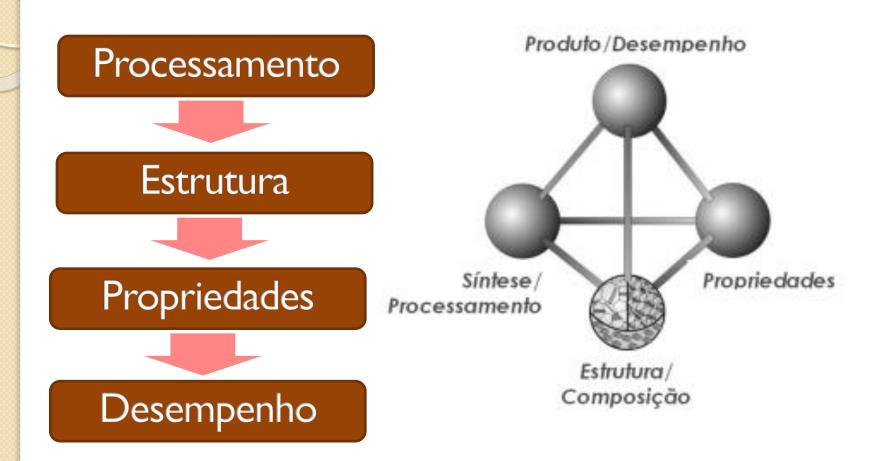
a) Cristalinos: Ordem de curto e longo alcance.

b) *Amorfos*: Apenas ordem de curto alcance.

Do que depende a estrutura dos materiais?

Processamento:

- A estrutura do material irá depender do processamento;
- Conjunto de técnicas para obtenção de materiais com formas e propriedades específicas.



Componentes Essenciais

A relação de interdependência entre processamento, estrutura, propriedades e desempenho.

Quantos materiais diferentes existem?

Entre 40.000 e 80.000, composiçãos diferentes de materiais!

COMO ESCOLHER ???

Como definir qual o melhor material para um determinado fim?

- Propriedades requeridas para tal aplicação;
- Condições de operação;
- O tipo de degradação que o material sofrerá em serviço;
- Econômica: Qual o custo do produto acabado???

 Em primeiro lugar, deve-se saber quais serão as condições de operação que será submetido o material e depois levantar as propriedades requeridas para tal aplicação!

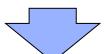
Refratário de uma forno submetido à altas temperaturas.

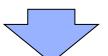
 A segunda consideração na escolha do material refere-se ao tipo de degradação que o material sofrerá em serviço;

 Finalmente, a consideração talvez mais definitiva é provavelmente a econômica:

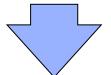
Qual o custo do produto acabado???

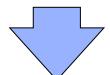
Um material pode reunir um conjunto ideal de propriedades, porém com custo muito elevado.




TIPOS DE INDÚSTRIA - INFLUÊNCIA DOS MATERIAIS

INDÚSTRIA DE PONTA


PRODUÇÃO EM MASSA

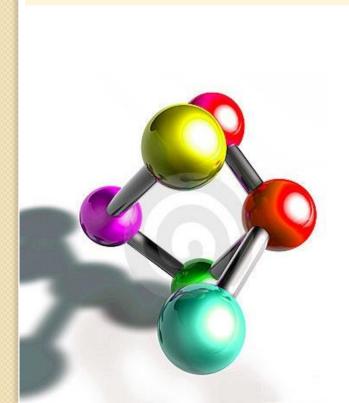


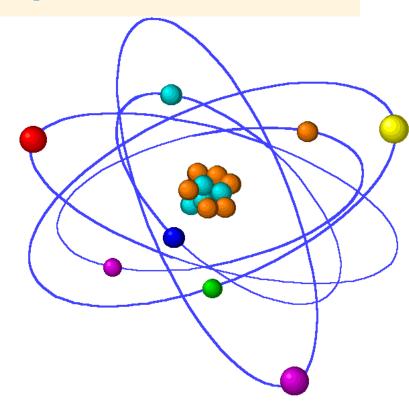
- Grande exigência tecnológica
- Utilização dos materiais nos limites

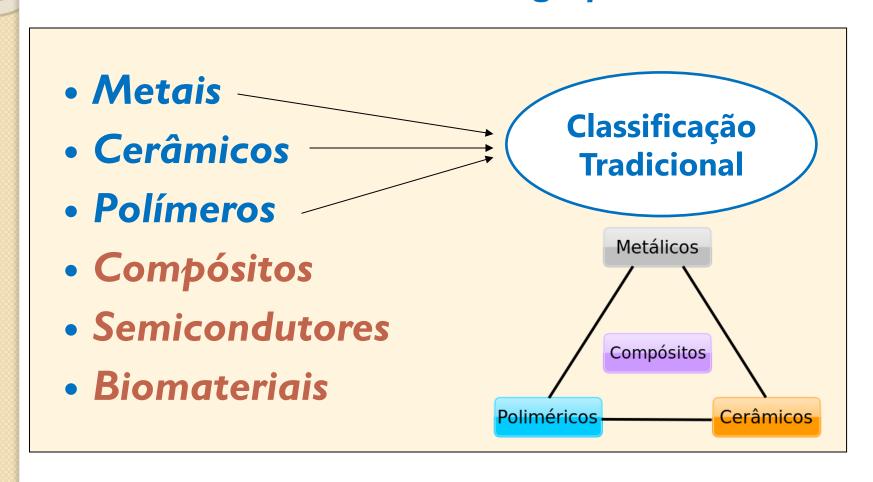
- Produtos não diferenciados
- Utilização de materiais abaixo dos limites

SELEÇÃO CUIDADOSA (FATOR CUSTO SECUNDÁRIO)

SELEÇÃO NÃO CUIDADOSA (FATOR CUSTO PRIMORDIAL)





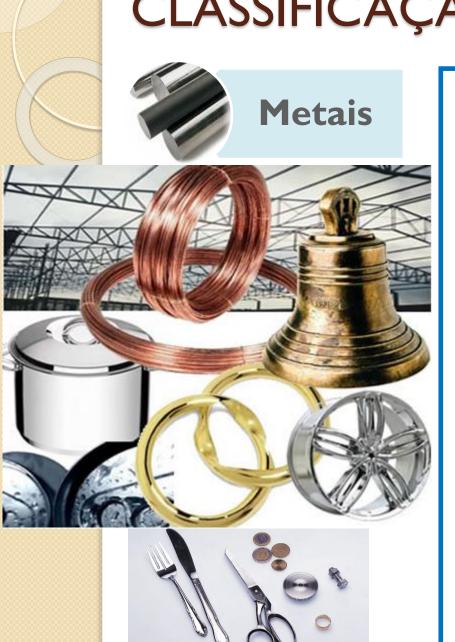


• A classificação tradicional dos materiais sólidos é geralmente baseada na composição e ligações químicas.

Os materiais sólidos foram agrupados em:

Metais

Os Metais na Tabela Periódica



la	-0																Elem
¹ H	2a	345										3a	4a	5a	ба	7a	² H
³Li	⁴ Be											5 B	6 C	⁷ N	E O	9 F	10 N
¹¹ Na	¹² Mg	3b	4h	5b	бЪ	7b		8		1b	2b	¹³ Al	14 Si	15 P	16 S	¹⁷ Cl	¹⁸ A
¹⁹ K	²⁰ Ca	²¹ Sc	²² Ti	²³ V	²⁴ Cr	²⁵ Mn	²⁶ Fe	²⁷ Co	28 Ni	²⁹ Cu	³⁰ Zn	31 Ga	³² Ge	³³ As	³⁴ Se	³⁵ Br	³⁶ F
³⁷ Rb	38 Skr	39 Y	⁴⁰ Zr	41 Nb	⁴² Mo	⁴³ Tc	44 Ru	45 Rh	⁴⁶ Pd	47 Ag	⁴⁶ Cd	⁴⁹ In	⁵⁰ Sin.	⁵¹ Sb	⁵² Te	53 I	54 X
55 Cs	⁵⁶ Ba	⁵7La	⁷² Hf	⁷³ Ta	74 W	™ Re	76 Os	⁷⁷ Ir	™ Pt	⁷⁹ Au	⁸⁰ Hg	⁸¹ TI	⁸² Pb	⁸³ Bi	⁸⁴ Po	^{B5} At	86 F
⁸⁷ Fr	EE Ra	*89 Ac	¹⁰⁴ Rf	¹⁰⁵ Ha	106		108	109								50.0	
*	⁵⁸ Ce	⁵⁹ Pr	60 Nd	61 Pm	62 Sm	⁶³ Eu	⁶⁴ Gd	⁶⁵ Tb	⁶⁶ Dy	⁶⁷ Ho	⁶⁸ Er	⁶⁹ Tm	⁷⁰ Yb	71 Lu	LANTHANIDE S ERIES		S
*	⁹⁰ Th	⁹¹ Pa	⁹² U	⁹³ No	⁹⁴ Pu	⁹⁵ Am	96 Cm	⁹⁷ Bk	⁹⁸ Cf	99 Es	¹⁰⁰ Fm	¹⁰¹ Md	¹⁰² No	¹⁰³ Lr	ACTINIDE S ERIES		

- São geralmente uma combinação de elementos metálicos (tais como ferro, alumínio, cobre, titânio, ouro e níquel) e, também elementos não-metálicos (carbono, nitrogênio e oxigênio) em pequenas quantidades (liga Fe-C);
- Os materiais metálicos possuem normalmente uma estrutura cristalina na qual os átomos estão arranjados de maneira ordenada;
- São relativamente **densos** em comparação às cerâmicas e aos polímeros.

- São mecanicamente rígidos e resistentes, dúcteis (isto é, são capazes de grandes quantidades de deformação) e são resistentes à fratura;
- São bons condutores de calor e de eletricidade;
- Não são transparentes à luz VIS;
- Têm aparência brilhosa quando polidos;
- Alguns metais (ex.: Fe, Co e Ni) possuem propriedades magnéticas.

Aplicações dos Metais

- Condução de eletricidade: fiação elétrica, conectores, etc;
- Estruturas: construção civil, pontes, pavilhões industriais, etc;
- Automóveis: corpo, chassis, molas, bloco do motor, etc.;
- Aeroplanos: componentes do motor, fuselagem, etc.;
- Trens: trilhos, componentes do motor, corpo, rodas;
- Máquinas e ferramentas: brocas, martelos, chaves-de-fenda,

Aplicações dos Metais

Ligas ferrosas (Aços)

Ligas não-ferrosas (Al, Ti,)

Aplicações em Indústrias em Geral

Aplicações Aeroespaciais

Aplicações dos Metais

Aplicações de Alta Tecnologia

Motor a jato

- Feito essencialmente de ligas metálicas;
- Por ex.: superligas de níquel resistentes à altas temperaturas, com elevada resistência mecânica e química.

Vidros e Cerâmicos

Os Cerâmicos na Tabela Periódica

la

CERAMICS AND

GLASSES

O grafite e o diamante são considerados cerâmicas!

¹ H	2a	<u>0</u> 8										3a	4a	5a	ба	7a	² He
³Li	⁴ Be											5 B	e.C.	7N	_E O	9 F	¹⁰ Ne
11 Na	¹² Mg	3ъ	46	5b	6h	7b		8		Ib	2h	¹³ Al	14 Si	15 P	16 S	¹⁷ CI	¹⁸ A1
¹⁹ K	²⁰ Ca	n Sc	²² Ti	23 V	24 Cr	²⁵ Mn	26 Fe	27 Co	²⁸ Ni	²⁹ Cu	³⁰ Zn	31 Ga	³² Ge	³³ As	³⁴ Se	³⁵ Br	³⁶ Kı
³⁷ Rb	38 Skr	³⁹ Y	⁴⁰ Zr	41 Nb	⁴² Mo	⁴³ Tc	44 Ru	45 Rh	46 Pd	47 Ag	⁴⁶ Cd	⁴⁹ In	⁵⁰ Sin	⁵¹ Sb	⁵² Te	⁵³ I	⁵⁴ Xe
⁵⁵ Cs	56 Ba	57La	72 Hf	73 Ta	74 W	78 Re	™ Os	77 lr	78 Pt	⁷⁹ Au	⁸⁰ Hg	81 TI	⁶² Pb	⁸³ Bi	⁶⁴ Po	85 At	⁸⁶ R1
⁸⁷ Fr	EE Ra	*69 Ac	¹⁰⁴ Rf	¹⁰⁵ Ha	106		108	109								8	
*	⁵⁸ Ce	⁵⁹ Pr	60 Nd	⁶¹ Pm	⁶² Sim.	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	⁶⁹ Tm	70 Yb	^π Lu	LANTHANIDE SERI		z
*	90 Th	⁹¹ Pa	92 U	93 No	24 Pu	95 Am	96 Cm	⁹⁷ Bk	98 Cf	99 Es	¹⁰⁰ Fm	¹⁰¹ Md	¹⁰² No	¹⁰³ Lr	ACTINIDE SERIES		

Os materiais cerâmicos são constituídos de metais e não-metais.

- São geralmente uma combinação de *elementos metálicos* e *não-metálicos* com exceção do carbono;
- Óxidos, nitretos e carbetos (por exemplo: alumina Al₂O₃, sílica SiO₂, carbeto de silício, SiC) ou materiais tradicionais (compostos por minerais argilosos);
- Com relação às propriedades mecânicas as cerâmicas são rígidas e resistentes (comparáveis aos metais);
- São tipicamente duras porém frágeis (ausência de ductilidade);

- São geralmente isolantes de calor e eletricidade (baixa condutividade térmica e elétrica);
- São mais resistentes à altas temperaturas e a ambientes corrosivos do que metais e polímeros;
- Possuem estrutura cristalina, amorfa (vítrea) ou parcialmente cristalino (vitrocerâmicos – cristais em uma matriz vítrea);
- Podem ser transparentes, translúcidas ou opacas;

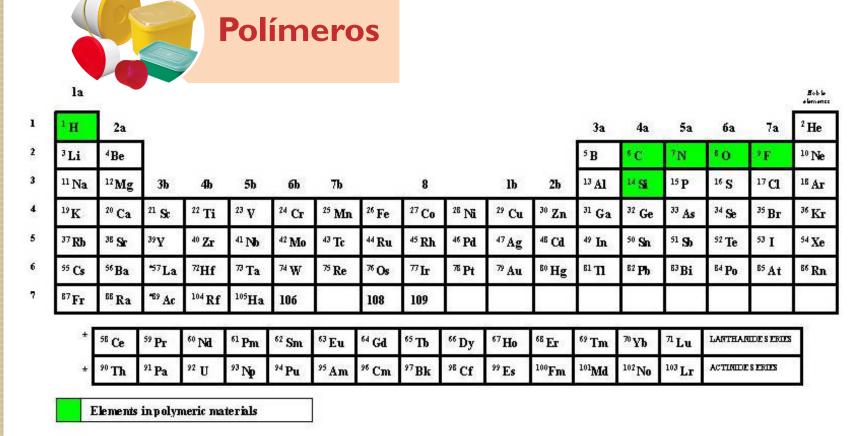
- Podem ser transparentes, translúcidas ou opacas;
- Em geral são leves;
- Algumas cerâmicas a base de óxidos (por exemplo, Fe_3O_4) exibem comportamento magnético.

Aplicações das Cerâmicas

• Cerâmicas Tradicionais: materiais de revestimento, tijolos, blocos, telhas, louças, materiais refratários, pigmentos, abrasivos, vidro, cimento e cal, etc

Aplicações das Cerâmicas

Aplicações de Alta Tecnologia



- Cubo de sílica de isolamento térmico: o interior do cubo está a 1250°C e pode ser manuseado sem proteção;
- Usada no isolamento térmico do *Space Shuttle* (ônibus espacial).
 - Tória (óxido de tório)
 - É o material cerâmico mais estável e o de mais alto ponto de fusão (3315°C), aplicado em reatores nucleares.

Polímeros

Os Polímeros na tabela periódica

São compostos orgânicos baseados em carbono, hidrogênio e outros elementos não-metálicos (como O, N e Si).

- São geralmente compostos orgânicos baseados em carbono, hidrogênio e outros elementos nãometálicos (como O, N e Si);
- Materiais poliméricos incluem plásticos e borrachas;
- Constituídos de cadeias moleculares muito grandes (macromoléculas), na maioria amorfos ou semicristalinos;
- Alguns polímeros comuns e familiares são: polietileno (PE), o náilon, o cloreto de polivinila (PVC), o policarbonato (PC), o poliestireno (PS) e a borracha de silicone.

- Apresentam baixa densidade;
- Não são rígidos e resistentes como os outros materiais;
- Muitos são extremamente dúcteis e flexíveis;
- São relativamente inertes quimicamente e não reativos em diversos ambientes;
- Maior desvantagem dos polímeros é sua tendência em amolecer ou decompor em temperaturas moderadas;
- Possuem baixa condutividade elétrica e são não-magnéticos.

Aplicações dos Polímeros

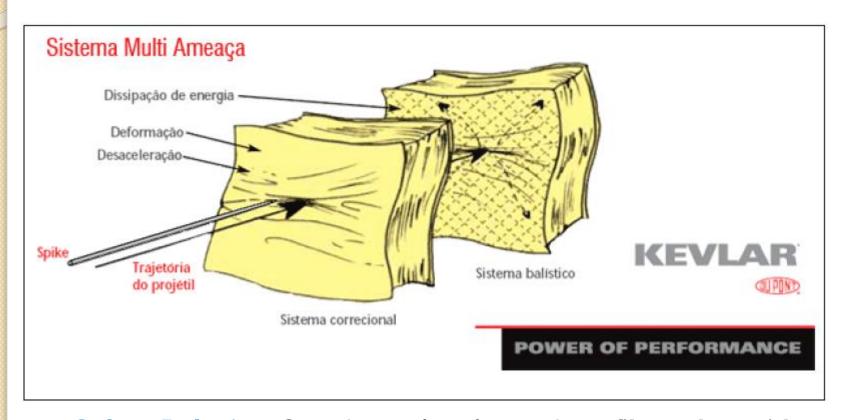
Poliestireno (PS) é encontrado nas caixas que embalam sanduíches.

Trata-se de um bom isolante térmico!

Nas escovas de dentes, as cerdas são feitas de nylon, e o cabo, de polietileno.

- Nas *fraldas*, os polímeros estão também presentes, o *polietileno*;
- Poliacrilato de sódio (flocgel):
 polímero super-absorvente utilizado na forma de pequenos cristais;
 - Material com grande capacidade de retenção de água: 800 vezes o seu peso em água!

Aplicações dos Polímeros


• KEVLAR (fibra sintética de aramida): construção de colete, escudo balístico e tanque de combustível dos carros de fórmula Isão compostos deste material, afim de evitar que objetos pontudos perfurem os tanques no momento da colisão.

Aplicações dos Polímeros

Detalhamento do colete balístico:

Colete Balístico: Quando o colete é atingido, as fibras do tecido absorvem e dissipam a energia do impacto, diminuindo sua velocidade, minimizando a ação da bala.

Compósitos

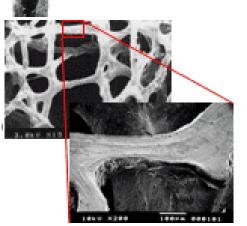
- Materiais compósitos são constituídos por dois ou mais materiais individuais;
- São "projetados" para apresentarem a combinação das melhores características de cada material constituinte.

Exemplos:

Fibra de Vidro com polímero:

Fibra de Carbono com polímero:

Aviões

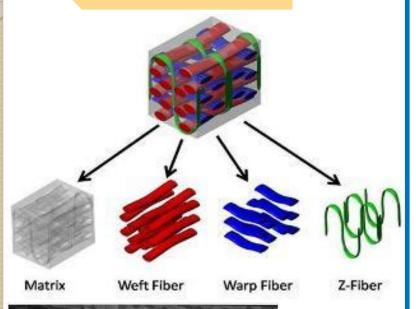


Carros

Compósitos

- Materiais multifásicos;
- Compatíveis quimicamente;
- Propriedades mecânicas complementares;
- **Propriedades finais** do compósito função das **propriedades** dos **constituintes**.

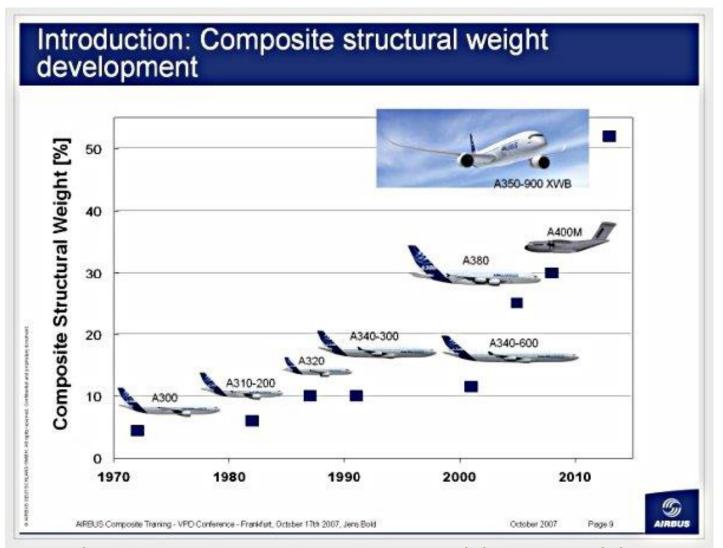
Naturais:



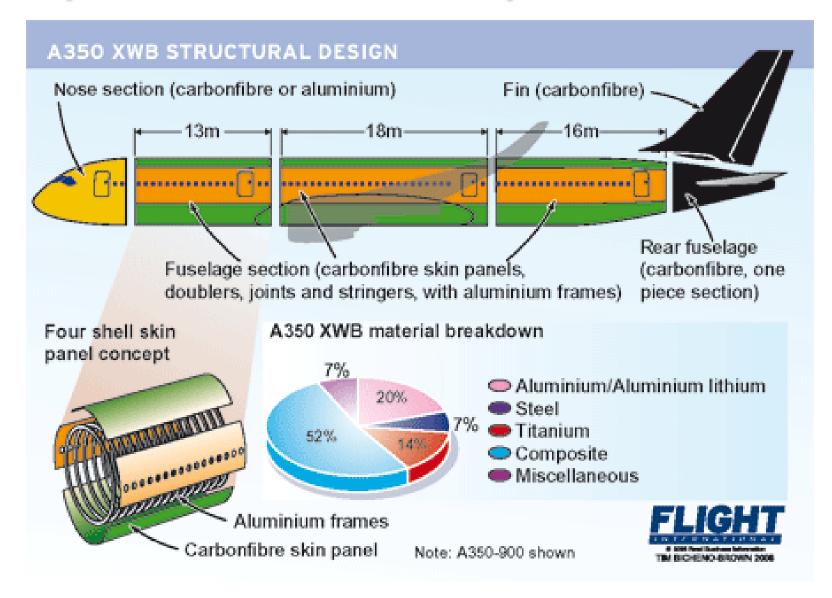
- Madeira: fibra de celulose resistentes e flexíveis envolvidas por uma matriz mais rígida chamada lignina;
- Ossos: proteína forte mas mole (colágeno) + mineral duro frágil (apatita).

fibers

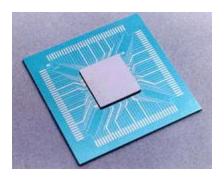
matrix

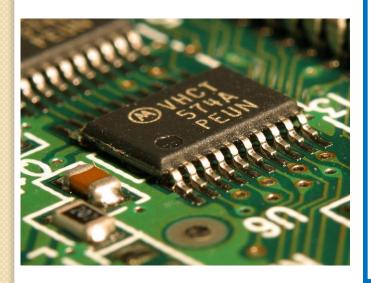


SOPa


- Constituição: um elemento de reforço envolvido por uma matriz de resina ligante;
- Os componentes podem ser identificados fisicamente por uma *interface bem definida* entre eles;
- Podem ser de vários tipos, fibrosos (fibras envolvidas por uma matriz) ou particulados (partículas em uma matriz).

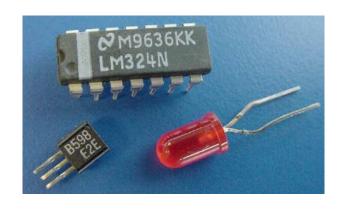
Aplicações dos Compósitos


Aumento de materiais compósitos no percentual de peso total de aeronaves de 1970-2013.


Aplicações dos Compósitos

MATERIAIS AVANÇADOS

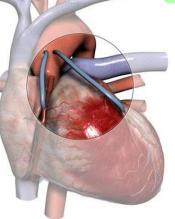
Semicondutores



- Materiais semicondutores
 apresentam propriedades elétricas
 que são intermediárias entre
 condutores e isolantes;
- As características elétricas são extremamente sensíveis à presença de pequenas quantidades de impurezas, cuja concentração pode ser controlada em pequenas regiões do material para transmitir e controlar uma corrente elétrica;
- Os semicondutores tornaram possível o advento do circuito integrado que revolucionou as indústrias de eletrônica.
- Exemplos: Si, Ge, GaAs, GaN, etc.

MATERIAIS AVANÇADOS

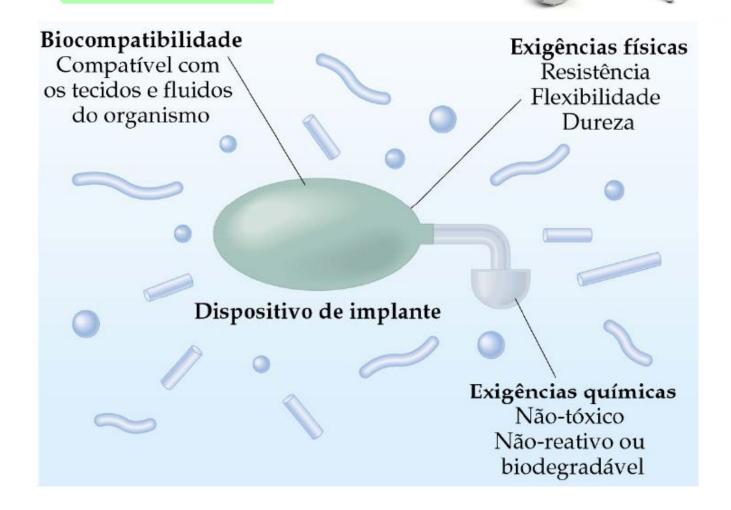
Aplicações dos Semicondutores



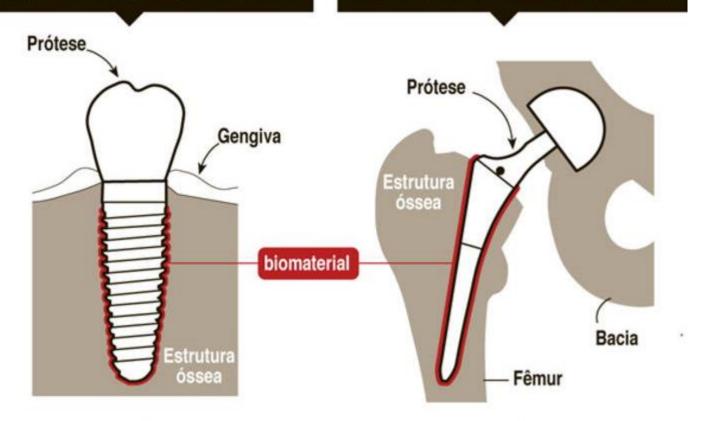
Empregado na **fabricação de componentes eletrônicos** tais como diodos, transistores, microprocessadores, e nanocircuitos.

MATERIAIS AVANÇADOS

Biomateriais



- Biomateriais são empregados em componentes para implantes em seres humanos como próteses ósseas e dentárias;
- Esses materiais não devem produzir substâncias tóxicas, devem ser compatíveis com o tecido humano (isto é, não deve causar rejeição) e bioativos;
- Metais, cerâmicos,
 compósitos e polímeros podem
 ser usados como biomateriais.


Biomateriais

Aplicações dos Biomateriais

EXEMPLO 1: PRÓTESE DENTÁRIA

EXEMPLO 2: PRÓTESE DE QUADRIL

O biomaterial estimula a densidade óssea e reduz os riscos de rejeição evitando a exposição direta ao metal utilizado no pino de sustentação com o osso. O metal do implante fica revestido pelo biomaterial composto por substâncias identicas às contidas no osso humano.

Aplicações dos Biomateriais

• Feito de poliuretano e titânio, o primeiro coração artificial brasileiro.

